Fluence correction factors and stopping power ratios for clinical ion beams.

نویسندگان

  • Armin Lühr
  • David C Hansen
  • Nikolai Sobolevsky
  • Hugo Palmans
  • Séverine Rossomme
  • Niels Bassler
چکیده

BACKGROUND In radiation therapy, the principal dosimetric quantity of interest is the absorbed dose to water. Therefore, a dose conversion to dose to water is required for dose deposited by ion beams in other media. This is in particular necessary for dose measurements in plastic phantoms for increased positioning accuracy, graphite calorimetry being developed as a primary standard for dose to water dosimetry, but also for the comparison of dose distributions from Monte Carlo simulations with those of pencil beam algorithms. MATERIAL AND METHODS In the conversion of absorbed dose to phantom material to absorbed dose to water the water-to-material stopping power ratios (STPR) and the fluence correction factors (FCF) for the full charged particle spectra are needed. We determined STPR as well as FCF for water to graphite, bone (compact), and PMMA as a function of water equivalent depth, z(w), with the Monte Carlo code SHIELD-HIT10A. Simulations considering all secondary ions were performed for primary protons as well as carbon, nitrogen and oxygen ions with a total range of 3 cm, 14.5 cm and 27 cm as well as for two spread-out Bragg-peaks (SOBP). STPR as a function of depth are also compared to a recently proposed analytical formula. RESULTS The STPR are of the order of 1.022, 1.070, and 1.112 for PMMA, bone, and graphite, respectively. STPR vary only little with depth except close to the total range of the ion and they can be accurately approximated with an analytical formula. The amplitude of the FCF depends on the non-elastic nuclear interactions and it is unity if these interactions are turned off in the simulation. Fluence corrections are of the order of a percent becoming more pronounced for larger depths resulting in dose difference of the order of 5% around 25 cm. The same order of magnitude is observed for SOBP. CONCLUSIONS We conclude that for ions with small total range (z(w-eq) ≤3 cm) dosimetry without applying FCF could in principle be performed in phantoms of materials other than water without a significant loss of accuracy. However, in clinical high-energy ion beams with penetration depths z(w-eq) ≥3 cm, where accurate positioning in water is not an issue, absorbed dose measurements should be directly performed in water or accurate values of FCF need to be established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Field Correction Effect on Dicluster Stopping Power in a Strongly Coupled Two-Dimensional Electron Gas System

We calculate the stopping power for heavy-ion diclusters moving in a strongly coupled two-dimensional electron gas system by using the local field corrected dielectric function at finite temperature. We obtain a parameterized local field correction factor based on a relation between the thermal compressibility and exchange-correlation energy in two-dimension. The interpolated parameter is deriv...

متن کامل

Fluence correction factor for graphite calorimetry in a clinical high-energy carbon-ion beam.

The aim of this work is to develop and adapt a formalism to determine absorbed dose to water from graphite calorimetry measurements in carbon-ion beams. Fluence correction factors, [Formula: see text], needed when using a graphite calorimeter to derive dose to water, were determined in a clinical high-energy carbon-ion beam. Measurements were performed in a 290 MeV/n carbon-ion beam with a fiel...

متن کامل

Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams.

Absolute dosimetry with ionization chambers of the narrow photon fields used in stereotactic techniques and IMRT beamlets is constrained by lack of electron equilibrium in the radiation field. It is questionable that stopping-power ratio in dosimetry protocols, obtained for broad photon beams and quasi-electron equilibrium conditions, can be used in the dosimetry of narrow fields while keeping ...

متن کامل

Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.

The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, ...

متن کامل

The Comparison of the shares of stopping power in a soft tissue-equivalent material

Introduction: Proton therapy is a type of radiation treatment that it uses protons to treat cancer. Because of the protons’ unique ability to distribute the radiation dose more directly to the tumor, it minimizes the damage to nearby healthy tissues. The rate of energy loss by the ion in the target is called stopping power. The total stopping power is sum nuclear and electroni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta oncologica

دوره 50 6  شماره 

صفحات  -

تاریخ انتشار 2011